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PhD Thesis Timeline
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High-Performance Computing

HPC is an essential tool in developments in science and technology.
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High-Performance Computing

Relies on the power of Supercomputers
 (Hardware + Interconnect)

That’s me @ Berkeley Lab

Requires a
Parallel Programming Framework
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● Parallel Programming Models
● Communication Libraries
● Runtime Systems
● Threading Libraries
● Compilers / Translators
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Source: Top500.org

ASCI Red (Sandia Lab, US)

Evolution of Supercomputers

IBM Roadrunner (Los Alamos Lab, US)

Sunway TaihuLight (NSC, China)

~ 5
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“The opportunities and challenges of exascale computing”. S. Ashby et al. In: Summary Report of the US DOE ASC. 2010

“The mission and science opportunities in going to exascale are compelling”



Example: Design of advanced materials.
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Challenges of Exascale Computing

3 Main Challenges1:

● Reduce Energy Consumption (From 200MW estimated to 20MW2).

● Ensure Reliability and Fault-Tolerance.

● Exploit Massive Parallelism.

○ Provide an adaptive response to load imbalance.

○ Develop multi-core and memory hierarchy-aware algorithms.

○ Reduce the cost of communication.

7
1“The opportunities and challenges of exascale computing", S. Ashby et  al, Summary Report of the US DOE ASCR, 2010
2“Algorithmic Challenges of Exascale Computing", K. Yelick, Presentation, Lawrence Berkeley National Laboratory 2012
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Thesis Motivation (1/3)
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Communication cost comprises a significant part of large-scale application running time1.
(Moreover, communication overheads are continuing to grow towards the Exascale.)

1“Communication Avoiding and Overlapping for Numerical Linear Algebra", E. Georganas et al, SC12, 2012

For this reason...

“[...] There is a need to investigate algorithms that reduce communication to a minimum.”21

2“The opportunities and challenges of exascale computing", S. Ashby et  al, Summary Report of the US DOE ASCR, 2010
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Traditional Parallel Programming Models
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Models Variants Languages/Interfaces

Threading Model Kernel Threads POSIX Threads, OpenMP

Message Passing Model

Flat MPI MPI

Fine-Grained MPI FP-MPI, TMPI, AzequiaMPI

MPI+X MPI+OpenMP, MPI+PThreads, 
MPI+MPI

Dataflow Models

Concurrent Collections Habanero-CnC, DAGuE

Statement-Level Dataflow SwiftT

Task-Level Dataflow Tarragon, SMPSs

Adapted and Simplified from: "Analysis of Parallel Programming Models for Exascale Computing", S. Martin, CSE Research Exam 2016

● Based on shared memory.
● Limited to a single node.

● Based on Message Passing.
● Enables inter-node communication.
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Anatomy of a naive MPI Application
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Begin
  Initialize Data
   For (iterations)
    { 
     … Receive Requests… 
     … Send Requests…
     -- Wait for Requests --
     … Compute …
    }
     Other Communication
     Output Result
End

● Problem: Naive MPI applications suffer from the full cost of communication.
● Coping strategies:

○ Hiding Strategy: Overlap communication with computation1,2.
○ Avoiding Strategy: Performing less and/or more efficient communication3.

1"A Programming Model for Block-Structured Scientific Calculations on SMP Clusters ", Ph. D. Dissertation, ‘98
2"Latency Hiding and Performance Tuning with Graph-Based Execution", P. Cicotti and S. Baden. In DFM’11

3"Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms", E. Solomonik and J. Demmel. In EuroPar’01

Core Usage Timeline:Initialization Part

Finalization Part

Main Loop
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Communication
 Phase

Computation
 Phase



Manual Optimization for Overlap
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For (iterations)
    { 
     … Receive Requests… 
     … Send Requests…
     -- Wait for Requests --
     … Compute …
    }

For (iterations) 
      { 
       … Receive Requests… 
       … Send Requests…
       … Compute(Independent) …
       -- Wait for Requests --
       … Compute(Dependent) …
      }

Core Usage Timeline:Shortfalls of re-factoring MPI applications manually:
● Embeds policy decisions into the application code.
● They may require non-trivial algorithmic changes.
● Transformations are hard to maintain (architecture-dependent).
● For some large applications, these transformations are unviable.

Manually decompose compute section into 
separate dependent/independent sections.
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Thesis Motivation (2/3)

12

Communication cost comprises a significant part of large-scale application running time1.

“[...] There is a need to investigate algorithms that reduce communication to a minimum.”2

(Moreover, communication overheads are continuing to grow towards the Exascale.)

1

Manual re-factoring of legacy MPI applications can be impractical.2

However...

1“Communication Avoiding and Overlapping for Numerical Linear Algebra", E. Georganas et al, SC12, 2012

For this reason...

2“The opportunities and challenges of exascale computing", S. Ashby et  al, Summary Report of the US DOE ASCR, 2010
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Adapted and Simplified from: "Analysis of Parallel Programming Models for Exascale Computing", S. Martin, CSE Research Exam 2016

Alternative Parallel Programming Models

13

Models Variants Languages/Interfaces

Threading Model Kernel Threads POSIX Threads, OpenMP

Message Passing Model

Flat MPI MPI

Fine-Grained MPI FP-MPI, TMPI, AzequiaMPI

MPI+X MPI+OpenMP, MPI+PThreads, 
MPI+MPI

Dataflow Models

Concurrent Collections Habanero-CnC, DAGuE

Statement-Level Dataflow SwiftT

Task-Level Dataflow Tarragon, SMPSs
● Data-dependency flow of execution.
● (Arguably) Less intuitive.
● Better suited to design

communication-tolerant applications

● Simple, intuitive, easy to use.
● Most widely used. Plenty of Legacy code.
● Hard to optimize for hiding communication cost.

Is automatic conversion 
possible?
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Automatic Translation

14

Alternative approach to manual re-factoring:

● Use translation-based tools to achieve communication/computation overlap1,2.

1"Perilla: Metadata-based Optimizations of an Asynchronous Runtime for Adaptive Mesh Refinement", T. Nguyen et al. In: SC’16
2"Petal Tool for Analyzing and Transforming Legacy MPI Applications", H Ahmed et al. In: LCPC ‘15

● Idea first proposed by the authors of the Bamboo Model3.

● Convert a traditional MPI program into a dataflow-model program automatically.

● The semantics of the source code remain unaltered.

3"Bamboo - Translating MPI applications to a latency-tolerant, data-driven form"  Nguyen et al. In SC’12
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Thesis Motivation (3/3)
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Communication cost comprises a significant part of large-scale application running time1.

“[...] There is a need to investigate algorithms that reduce communication to a minimum.”2

(Moreover, communication overheads are continuing to grow towards the Exascale.)

Manual re-factoring of legacy MPI applications is impractical.

1

2

Automatic translation can help towards communication-efficient Exascale computing.3

However...

Therefore...

1“Communication Avoiding and Overlapping for Numerical Linear Algebra", E. Georganas et al, SC12, 2012

For this reason...

2“The opportunities and challenges of exascale computing", S. Ashby et  al, Summary Report of the US DOE ASCR, 2010
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Related Work
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Bamboo Model
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For (iterations)
 { 
  … Receive Requests… 
  … Send Requests…
  -- Wait for Requests --
  … Compute …
 }

Translation

Source MPI 
C/C++ Code

Communication
Hiding

Version

Tarragon
C++ Code

Annotated MPI 
C/C++ Code

# pragma Bamboo Overlap
For (iterations)
 { 
  # pragma Bamboo Receive
  { … Receive Requests… }
  # pragma Bamboo Send 
  { … Send Requests… }
  # pragma Bamboo Compute
  { … Compute … }
 }

Annotation
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● Tarragon is a parallel programming model for 
communication-tolerant algorithms.
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A Bamboo-Translated code runs as a Tarragon1 program.
1"Latency Hiding and Performance Tuning with Graph-Based Execution"  P. Cicotti and S. Baden. In DFM’11

Source:  “Bamboo: Automatic Translation of MPI Source into a Latency-Tolerant Form” 
T. Nguyen. PhD Thesis ‘14.

● Bamboo converts each original MPI process 
into a set (>1) of Tarragon tasks.

● Tarragon tasks are not assigned resources 
until data dependencies are satisfied.

● Communication cost is hidden by executing 
ready tasks while others are communicating.

Tarragon Model
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Core Usage Timeline

Untranslated 
MPI Code

Translated Code
2 Tasks / MPI Process

19Observation: The optimal task number is dependent on both the application and the system.
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Bamboo’s Limitations
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● Bamboo and Tarragon were not co-designed.
○ Bamboo’s translation logic was constrained to the Tarragon runtime system’s design.

● Static Scheduling Problem
○ Tarragon provides a single execution entry point per task (Tarragon_Execute).
○ Bamboo needs embed static scheduling logic into the translated code.

■ Code Bloating: 15x increase. Difficult to debug.
■ No support for recursive code. Incompatible with some production applications.

● Handling MPI⬄Tarragon Communication 
○ A description of the communication graph layout is required by Tarragon.

■ This is a problem domain-specific setting.
○ All communication needs to be annotated (even initialization/finalization).
○ Buffering and header wrapping is required to translate Tarragon to MPI messages.

■ This requires additional CPU overhead (memcpy) and memory bandwidth.
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Bamboo demonstrated automatic translation can be used to the cost of communication, however:



Refactoring Bamboo/Tarragon
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Refactoring Bamboo/Tarragon
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Goal: Refactor Bamboo and Tarragon simultaneously to address their limitations.

● Milestone 2: Transfer scheduling/communication functionality from Bamboo to Tarragon.

● Bittersweet results:
○ Reduced code bloating by a factor of ~3x. 
○ Recursion remained a problem due to Tarragon’s single entry point mechanism.

■ Further re-factoring was impractical due to Bamboo and Tarragon’s complexity.
■ Could not get Tarragon to run efficiently in new architectures, but:

○ Gained the how-to for building both a Translator and a Runtime System.

● Milestone 1: Learn how Bamboo & Tarragon operate
1. Examine translated codes.
2. Examine the source code of Bamboo (15k LoC) and Tarragon (16k LoC).
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Toucan/MATE
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New Project
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● Design a new Translator
○ Minimal intervention: no static scheduling embedded in the code.

■ Negligible Code Bloating.
■ Debuggable code.

○ Minimal annotation requirements
■ No problem domain-specific annotations. 
■ Annotated/non-annotated communication can co-exist.

● Co-Designed with a new Runtime-System
○ Supports multiple entry points.
○ Manages all MPI message handling.
○ Supports Recursive Execution.

New Goal: Co-Design a new translator and a new runtime system simultaneously.
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Introducing Toucan/MATE

25

● Toucan/MATE rely on two mechanisms:
1. Oversubscription of processor cores.
2. Code region-aware scheduling.

(Pronounced ‘Mah-tay’)

● Toucan: an improved MPI Translator
○ Built using the ROSE Compiler Framework (LLNL).
○ Uses a reduced set of Bamboo’s annotations (4 directives)

● MATE Runtime System
○ Uses lightweight threads (Coroutines) instead of static scheduling.
○ Coroutines can exit/re-entry a function at any given point.
○ Creates and schedules the dependency graph dynamically.
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Core Oversubscription in Toucan/MATE
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Typical MPI Decomposition
1 Subdomain per Core

Toucan’s Overdecomposed Grid
4 Subdomains per Core

(Single Task Pool per Node)

Split the problem domain into more partitions than useful cores in the system.

Core 1
Core 2
Core 3
Core 4

Core 0 Core 1

Core 2 Core 3
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Code Regions
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- Compute depends only on receive
- Receive depends on compute*
- Send depends on compute* and send*

Coroutine yields to MATE Scheduler (instead of OS)

*From previous iteration

Dependency Graph defined implicitly:

Toucan defines 3 code region types:
(Compute, Send, Receive)

Loop is divided into 3 separate steps.
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Timeline at Steady State:



Runtime System (MATE/Toucan)
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Task Decomposition

Region Decomposition
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Example: 1D Stencil Jacobi Solver 

Toucan Translation Process

385 LoC → 491 LoC (1.27x Increase)
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 Hardware Testbed: Edison @ NERSC
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Processor:  2x12-core Intel "Ivy Bridge" @2.4Ghz

NERSC Edison Supercomputer:  
5586 Computing Nodes

Memory: 64 Gb DDR3 Total per Node

Software:  
● Cray-MPICH v7.4.1
● Intel icc compiler 15.0.1 (-O3)
● Intel MKL Library (for dgemm)
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Source:  “Bamboo: Automatic Translation of MPI Source into a 
Latency-Tolerant Form” T. Nguyen, PhD Dissertation 2014

Source:  NASA Ames Research CenterSource:  Lawrence Livermore National Laboratory

Source:  "Accelerating a 3D Finite-Difference Earthquake 
Simulation with a C-to-CUDA Translator", Cai et al.                   

Test Cases
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Cart3D (Unstructured Grid)
Multigrid solver of Euler equations. Relies on recursive code.

LULESH 2.0 (Unstructured Grid)
Solves the Sedov blast problem. Developed at LLNL.

Jacobi 3D (Structured Grid)
Solves the Poisson equation for 3D PDEs. 

Cannon 2D (Dense Linear Algebra)
Computes the matrix product of two matrices.

We used 4 examples from 3 common scientific application motifs1:

1“Defining Software Requirements for Scientific Computing", P. Colella, LBL 2016
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Results @ Edison

32“Toucan - A Translator for Communication Tolerant MPI Applications.” S. Martin, M. J. Berger, S. Baden. In IPDPS’17

Recursive Code

# Cores
Test Case
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Toucan Model Limitation
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Typical MPI Decomposition
1 Subdomain / Core

Overdecomposed Grid
4 Subdomains / Core

Observation: Overdecomposition requires additional internal communication.

I. Introduction    |    II. Related Work    |    III. Refactoring    |    IV. Toucan    |    V. Hybrid    |    VI. Remaining Work 



Hybrid Model
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MATE Hybrid Model 
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● New Model: Workload decomposed twice. (1) Process-wide and (2) Within Shared Domain  

Observation: Hybrid model only requires synchronization for tasks sharing the same subdomain.

Hybrid Model - 2-Level Decomposition
4 Subdomains / Core
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Toucan Model 
4 Subdomains / Core



Programming with Hybrid Model
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● Hybrid Model requires manual changes in the workload distribution part of the application.
● Two possible approaches:

Pros:
- Single shared malloc
- Contiguous Access

Cons:
- Requires two decompositions
- Cache blocking sensitive

Pros:
- Re-uses original decomp.
- Cache efficient

Cons:
- Requires pointer passing
- Non-contiguous access

Decompose by Subrank,
Local Pointer Access 

Decompose by Process, 
Decompose by Subrank
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Runtime System (MATE/Hybrid)
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VF

Level 1 Decomposition

Level 2 Decomposition
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Region Decomposition



Results @ Edison
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    ~
5.7x Im

provement



 Testbed Transition
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Node Configuration:  
● 2x12-core Intel "Ivy Bridge" @2.4Ghz
● 460 Gflops/node

NERSC Edison Supercomputer:  
Operational since 2013

Node Configuration:  
● 68-core Intel “Knights Landing” @1.4Ghz
● 3000 GFlops/node

NERSC Cori KNL Supercomputer:  
Operational since 2017

(2017) Having shown promise with the Hybrid model, we decided to shift to a newer platform:
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Results @ Cori KNL

40

~2.5x Im
provement
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Progression Roadmap (2017)
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Progression since Winter 2017.

Starting from Toucan (16%) until today (84%).

Each bar represents an improvement.

    
    

    
~5.2

x I
mprove

men
t
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Node Boundary

Optimization 1: Subrank Prioritization 
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● Fact: Not all subranks incur the same communication cost.
● Idea1: Prioritize subranks with higher communication cost to execute first.

Crossing Node
 Boundary

Crossing Process
 Boundary

Synchronization Only

Adaptive Algorithm in MATE:

● Effect: Initialize costly communication first.

1"Performance tradeoffs in multi-tier formulation of a finite 
difference method"  S. B. Baden and D. Shalit. In: ICCS 2001.                 

Higher Priority 
(mostly Node Boundary)

Medium Priority 
(Mixed Boundaries)

Low Priority 
(Inner Tasks)
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Results: Prioritization
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Hybrid (Default)
No priority scheme. 

Hybrid (Boundary)
+Priority to Boundary Subranks 

Hybrid (Center)
-Priority to Boundary Subranks

Comparing 3 Variants:
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Process-Wide MPI Lock

Optimization (2/3): Thread Concurrency 
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● MPI implements a process-wide lock, which limits communication concurrency.

Source Buffer (Non-contiguous data)

Hidden MPI Buffer (Contiguous data)

MATE Workers

● Non-Contiguous buffers in MPI need to be packed before communicating. 

Hidden MATE Buffer (Contiguous data) Thread-Safe

Process-Wide MPI Lock

● Solution: Have MATE perform automatic thread-safe packing before calling MPI. 
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Comparing 2 Variants:

Hybrid 
MPI-Only

Hybrid 
Mate Packing + MPI

Results: MPI vs. Mate Packing 
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Optimization (3/3): Explicit Graph in MATE
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Explicit Dependency Graph

5 pragma annotations:
(Compute, Pack, Send, Receive, Unpack)

5 Task Exit Points.
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Results: Dependency Graph Variants
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Comparing 3 Variants:

Hybrid (Implicit)
Toucan Model

Hybrid (Explicit)
+Pack/Unpack Regions
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Hybrid Model Conclusions
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● The Hybrid Model exceeds the efficiency of the Toucan Model.
○ Hides communication by oversubscribing cores (like Toucan) but,
○ It does not require additional communication.

● Subrank prioritization can have a substantial impact on performance.
○ MATE can assign priorities adaptively during execution.

● Thread concurrency is still an important issue to be solved.
○ Packing can be performed concurrently, but MPI still locks comm ops.
○ Solution: Use a different communication layer? (GasNET / UPC++)

● It is possible to refine dependency graphs explicitly.

● Limitation: Require some manual changes to the workload distribution logic.
○ Possible topic for another thesis: make translation fully automatic.
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Remaining Work
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Cart3D in Depth

● Complex Code: 38k Lines of Code + Recursion.

● Non-trivial communication:
○ Irregular (asymmetric) communication.
○ Non-contiguous data types.
○ 4 communication regions in the main loop.

Source: https://www.nas.nasa.gov/publications/software/docs/cart3d/

Cart3D is a high-fidelity analysis package for aerodynamic design.

● Production code developed by NASA Ames and 
NYU Courant Institute of Mathematics. 

● Has hundreds of users.

● Uses a multigrid with irregular meshes.
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Why is Cart3D Important?
 Cart3D is an ideal test case:

● Demonstrates that translation can improve the 
performance of a production code at scale.

● We are working with developers at NYU / NASA.

● We have shown that Toucan can hide 33 to 41% of 
communication cost at scale in our Edison 
experiments (256 nodes).

51
“Toucan - A Translator for Communication Tolerant MPI Applications.” 

S. Martin, M. J. Berger, S. Baden. In IPDPS’17

 Hybrid Model can outperform Cart3D on Toucan:

● Cart3D on Toucan suffers from added 
communication.

● We expect to achieve similar improvements as with 
Jacobi3D (~80% of communication hidden)

~80%

~80%

1.24x

1.26x
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Next Milestones
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● Apply Toucan to the latest version of Cart3D. (1~2 Months)
● Develop the Hybrid Model variant of Cart3D. This requires manual restructuring of Cart3D. (6~7 Months)

○ Run experiments at scale (>1024 Nodes) for Cart3D and other test cases.

○ Use parallel profiling tools (HPC Toolkit) to examine the low-level effects of our models.

○ Write and submit a paper to a main HPC conference (e.g. SC, IPDPS, EuroPar)

● Write and defend PhD Dissertation (~3 Months)

(2~3 Months)

● Total: ~13-15 Months
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Questions?


