
Translation and Runtime System-based
Techniques for Hiding the Cost of

Communication

Sergio Martin
University of California, San Diego

Berkeley Lab

Date: 8/8/2017

Roadmap (2017)

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

2

Progression of the % of
communication hidden.

Starting from January’s
version of our translator
(21%) until today (83%).

Each bar represents an
incremental optimization.

Motivation

3

● Problem: Communication costs are significant in large-scale parallel applications
○ Moreover, the overheads are continuing to grow towards the Exascale.

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

● Coping strategies:
○ Hiding Strategy: Overlap communication with computation
○ Avoiding Strategy: Performing less and/or more efficient communication

● Shortfalls of implementing coping strategies manually:
○ They may require algorithmic changes.
○ Entangles the coping strategy with the application logic.
○ For some large applications, these transformations are inviable.

Anatomy of a (Typical) MPI Program

4

Begin

 Initialize Data

Main Loop
 {
 … Receives …
 … Sends …
 -- Wait --
 … Compute …
 }

 Other Communication
 Output Result

End

Overlap Communication
 and Computation via

 Manual Transformation

Begin

 Initialize Data

Main Loop
 {
 … Receives …
 … Sends …
 … Compute(Independent) …
 -- Wait --
 … Compute(Dependent) …
 }

 Other Communication
 Output Result

End

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

I. Introduction | II. MP Models | III. PGAS Models | IV. Dataflow Models | V. Discussion | VI. Conclusions

Granularity of MPI Programs

Equation: Granularity of an SPMD program. Defines how the workload is divided among processes.

Problem Size

Number of MPI Processes

Observation I: MPI programs typically reach optimal performance when P = c, where c = number of cores.

Drawback: P = c fixes granularity to the underlying architecture and does not allow oversubscription. 5

Toucan
Model

6

Introducing Toucan

7

● Toucan/MATE rely on two mechanisms:
1. Oversubscription of processor cores.
2. Splitting source code into code regions, scheduled individually.

○ MATE encapsulates all dynamic scheduling logic.
○ Avoids code bloating compared to Bamboo (static scheduling)
○ Supports recursive code.

(Pronounced ‘Mah-tay’)

● The translated code is linked to execute on our runtime system: MATE.

1"Bamboo - Translating MPI applications to a latency-tolerant, data-driven form" Nguyen et al. In SC’12

● A Source-to-Source Translator of C/C++ MPI Applications.
○ Automatically generates an overlapping version of the source code.
○ Built using the ROSE Compiler Framework (LLNL).
○ Uses Bamboo’s1 annotation scheme.

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Definitions

8

● Overdecomposition (SPMD):
○ The problem domain is split into more partitions

(Implies communication. i.e. ghost cells) than useful cores in the system.

● Oversubscription:
○ Instantiating more autonomously executing tasks (ranks) than useful cores

at all times during the execution.

● Virtualization Factor:
○ The integer multiplier by which oversubscription is achieved.
○ E.g. Instantiating 64 ranks in a 32-core run ⇒ VF=2

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Toucan Decomposition

9

N/m Elements per Rank
N/m Elements per Core

N/(2m) Elements per Rank
N/m Elements per Core

Typical Decomposition:
Virtualization Factor = 1

m Ranks, m Cores

Toucan Decomposition:
Virtualization Factor = 2

2m Ranks, m Cores

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Toucan can only achieve oversubscription through overdecomposition.

Code Regions (1/2): A Basic MPI Code

10

All operations are waited for at
MPI_Waitall().

1 Task Exit Point: MPI_Waitall().

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Code Regions (2/2): Using Toucan

11

- Receive depends on compute*
- Send depends on compute* and send*
- Compute depends on receive ops only

3 pragma directives:
(Compute, Send, Receive)

3 Task Exit Points:
One at the start/end of each region.

*From previous iteration

Dependency Graph implicitly defined by
the Bamboo/Toucan model:

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Runtime System (MATE/Toucan)

12

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Core Usage Timeline

 MPI Original - No Overlap

Toucan - VF=2 + Code Regions

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

 Hardware Testbed: Cori KNL @ NERSC

14

Node Configuration:
● 1 x 68-core Intel KNL processor @ 1.4 Ghz (We only use 64 cores per Node)

Software:
● Cray-MPICH v7.6.0
● Intel icc compiler 17.0.2 (-O3)

Memory:
● 16 GB MCDRAM ~ 460 GB/s
● 96 GB DDR4 ~102 GB/s

Test Case:
● 13-Point Stencil 3D Jacobi Solver
● 2 Control Variants:

- MPI Original
- Upper Bound

Image Source:
"Accelerating a 3D
Finite-Difference
Earthquake Simulation
with a C-to-CUDA
Translator", Cai et al.

MPI Original without communication,
 just synchronization

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Results: Toucan Variants

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

VF=1
Does not allow any overlap

since cores cannot find
ready ranks while other

communicate.

15

VF=2
Achieves optimal

performance in both cases.

VF=4
Loses performance due to
the surface/volume ratio

problem.

Surface/Volume Ratio Problem

16

● Overdecomposition in Toucan requires communicating extra ghost cells.
● Suffers from increased in-node communication.

Typical MPI Decomposition
Virtualization Factor = 1

Toucan Overdecomposition
Virtualization Factor = 4

There is an excess of in-node communication: 1.30x more, in our Edison experiments.

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Hybrid
Model

17

MATE Hybrid Model

18

● Problem domain is not overdecomposed.
● Instead, oversubscribed tasks share the same process-wide subdomain.

Typical MPI Decomposition
Virtualization Factor = 1

H-Model (No Overdecomposition)
Virtualization Factor = 4

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Synchronization is required for tasks in the same subdomain only.

Runtime System (MATE/Hybrid)

19

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Results: Hybrid vs Toucan

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Since the Hybrid model does
not increase the amount of

communication inside a
node, higher Virtualization

Factors can be used.

20

In this case, VF=4 is the
ideal setting for the Hybrid

Variant, achieving more than
double the overlap yield of

the Toucan variant.

Optimization #1:
Subrank

Prioritization

21

Subrank Prioritization

22

● Fact: Not all subranks incur the same communication cost.
● Idea1: Prioritize subranks with higher communication cost to execute first.

Crossing Node
 Boundary

Crossing Process
 Boundary

Synchronization Only

Adaptive Algorithm in MATE:

● Effect: Maximize computation while longer communication is performed.

1"Performance tradeoffs in multi-tier formulation of a finite
difference method" S. B. Baden and D. Shalit. In: ICCS 2001.

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Node Boundary

Higher Priority
(mostly Node Boundary)

Medium Priority
(Mixed Boundaries)

Low Priority
(Inner Tasks)

Results: Prioritization

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

23

Hybrid VF=4 Default
No priority scheme. Execution
order is mostly random.

Hybrid VF=4 + Boundary
Priority scheme as described in
the previous slide.

Hybrid VF=4 + Center
The opposite scheme than the
one described in the previous
slide.

We tested 3 prioritization schemes:

Optimization #2:
Thread

Concurrency
24

Thread Concurrency Problem

25

● MATE processes currently use MPI as communication backend.
● MPI implements a process-wide lock, which limits communication concurrency.
● Non-Contiguous Datatypes are particularly problematic:

MPI_Isend(strided_type)

1) Pack strided data into a hidden contiguous buffer.
2) Transmit buffered data to destination rank.

MPI_Lock

MPI_Irecv(strided_type)

1) Receive incoming data into a hidden contiguous buffer.
2) Unpack data into destination with strides.

MPI_Lock

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Thread Concurrency Problem

26

● A way to cope with this problem is to split MPI operations:
○ MPI_Isend ⇒ MPI_Pack + MPI_Isend (contiguous)
○ MPI_Irecv ⇒ MPI_Irecv (contiguous) + MPI_Unpack

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Thread Concurrency Problem

27

After splitting the operations, threads can perform concurrent packing/unpacking.

MPI_Isend(contiguous)

Transmit buffered data to destination rank. MPI_Lock

MPI_Pack(strided_type)

Pack strided data into an explicit contiguous buffer. Thread Safe

MPI_Unpack(strided_type)

Unpack data into destination with strides.

MPI_Lock
MPI_Irecv(contiguous)

Receive incoming data into an explicit contiguous buffer.

Thread Safe

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Results: Contiguous vs Non-Contiguous

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

28

Comparing 2 Variants:

Hybrid VF=4 + Non-Contiguous
Communication

Hybrid VF=4 + Packing/Unpacking
+ Contiguous Communication

Optimization #3:
Dependency

Graph Refinement

29

Toucan-Annotated Program

30

Dependency Graph implicitly defined
- Receive depends on compute*
- Send depends on compute* and send*
- Compute depends on receive ops only

3 pragma annotations:
(Compute, Send, Receive)

3 Task Exit Points.

*From previous iteration

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Explicit Graph in MATE

31

Dependency Graph explicitly defined
- Receive depends on Unpack*
- Pack depends on Compute*, Send*
- Send depends on Pack
- Unpack depends on Receive
- Compute depends on Unpack

5 pragma annotations:
(Compute, Pack, Send, Receive, Unpack)

5 Task Exit Points.

*From previous iteration

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Directional Annotations

32

Dependency Graph explicitly defined
All regions and dependencies are split into

their specific directions

9 pragma annotations:
(Pack, Send, Receive, Unpack) x 2

Compute

9 Task Exit Points.

*From previous iteration

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Results: Dependency Graph Variants

33

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Results: Matrix Multiplication

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

34

Results for the Cannon2D
Matrix Multiply algorithm

Comparing variants with and
without annotations.

The variant with an explicitly
defined graph hides 11-15%

more of the communication cost.

Conclusions

35

Conclusions

36

● The Hybrid Model exceeds the efficiency of the Toucan Model
○ Hides communication by Oversubscription+Regions (like Toucan) but,
○ It does not require overdecomposition (zero added communication).

● Subrank prioritization can have a substantial impact on performance
○ Communication cost is not homogeneous, thus creating

opportunities for further communication/computation overlap.
○ The MATE runtime can assign priorities automatically during execution.

● Thread concurrency is still an important issue to be solved
○ Even if packing can be performed concurrently, MPI still locks comm ops.

● It is possible to refine dependency graphs explicitly

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Future Work

37

● Apply the Hybrid Model on real-world applications / benchmarks
○ E.g. Mpix_FlowCart (>20k LoC)

● Replace MATE’s communication layer.
○ Use a thread-tolerant communication layer (e.g. GASNetEx, UPC++)
○ While keeping the current MPI-2 programming interface.

● Use parallel profiling tools to examine the low-level effects of our models
○ HPCToolkit

● Explore the effect of refining code regions and dependencies
○ Their impact on performance needs to be investigated further.

I. Introduction | II. Toucan | III. H-Model | IV. Priorities | V. Concurrency | VI. Graph | VII. Conclusions

Questions?

38

For an explanation of Toucan’s rationale and experimental results on
the Edison supercomputer, check our IPDPS’17 paper:

“Toucan - A Translator for Communication Tolerant MPI Applications”
S. Martin, M. J. Berger, and S. B. Baden

