
The MATE Model
Rationale & Preliminary Results

Sergio Martin
PhD Candidate @ UC San Diego

GSRA @ Berkeley Lab

Argonne, IL 03/05/2018

Challenges in Extreme Scale Computing

Big Challenge1,2: Exploit Massive Parallelism

● Develop efficient multi-core and memory hierarchy-aware algorithms.

● Provide an adaptive response to load imbalance.

● Mitigate the ever-growing cost of communication.

○ Intranode Data Motion

○ Network Communication

○ Packing/Unpacking of Non-Contiguous Data

1“The opportunities and challenges of exascale computing", S. Ashby et al, Summary Report of the US DOE ASCR, 2010
2“Algorithmic Challenges of Exascale Computing", K. Yelick, Presentation, Lawrence Berkeley National Laboratory, 2012

 Sergio Martin - The MATE Model (2/40)

Anatomy of a Naive SPMD Application

○ Communication Hiding Strategy: Overlap communication with computation1,2.
○ Communication Avoiding Strategy: Performing less and/or more efficient communication3.

Core Usage Timeline:

Communication
 Phase

 For (iterations)
 {
 … Receive Requests…
 … Pack Data …
 … Send Requests…
 -- Wait for Requests --
 … Unpack Data …
 … Compute …
 }

Main Loop:

Computation
 Phase

● Problem: Naive SPMD MPI applications suffer from the full cost of communication.

1"A Programming Model for Block-Structured Scientific Calculations on SMP Clusters ", Ph. D. Dissertation, ‘98
2"Latency Hiding and Performance Tuning with Graph-Based Execution", P. Cicotti and S. Baden. In DFM’11

3"Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms", E. Solomonik and J. Demmel. In EuroPar’01

● Coping strategies:

 Sergio Martin - The MATE Model (3/40)

Manual Optimization

 For (iterations)
 {
 … Receive Requests…
 … Pack Data …
 … Send Requests…
 -- Wait for Requests --
 … Unpack Data …
 … Compute …
 }

For (iterations)
 {
 … Receive Requests…
 … Pack Data …
 … Send Requests…
 … Compute(Independent) …
 -- Wait for Requests --
 … Unpack Data …
 … Compute(Dependent) …
 }

Core Usage Timeline:

Manually decompose compute section into
separate dependent/independent sections.

What it entails to perform a manual optimization of a code:
● Requires embedding foreign logic into the solver part of the code.
● Transformations are hard to maintain (some are even architecture-dependent).

 There are alternative ways to reduce communication cost.

 Sergio Martin - The MATE Model (4/40)

Current PhD Project

Unified Model for Communication-Tolerant Scientific Applications

● Employs a combination of 4 mechanisms to:
○ Hide the cost of network communication.
○ Reduce the cost of on-node data motion.

● It is comprised of:
○ An annotation model (C/C++ #pragma) for dependency-driven execution.
○ A source-to-source code translator (ROSE Compiler Framework).
○ A runtime system between the application communication layer (MPI/CUDA/etc).

 Sergio Martin - The MATE Model (5/40)

Mechanism I:
Task Overdecomposition

Task Overdecomposition
Observation:
❏ Typical execution of SPMD MPI applications instantiate one process per core.
❏ Instantiating more processes would only introduce additional scheduling overhead.

Idea:

1“The Virtualization Model of Parallel Programming: Runtime Optimizations and the State of Art”, Laxmikant V. Kalé. In: LACSI’02.
2“FG-MPI: Fine-grain MPI for multicore and clusters”, H. Kamal and A. Wagner. In: IPDPSW’10.

3“Asynchronous programming with Tarragon”, P. Ciccotti, S. Baden. In: HPDC’06.

❏ Interpret MPI ranks as reentrant functions (virtualization), not OS processes1,2.
❏ Develop a user-level scheduler / runtime system.
❏ Instantiate more tasks than cores. Schedule them based on readiness3.

Expected results:
❏ A rank starts communication earlier while another performs computation.
❏ Realize communication and computation overlap.

 Sergio Martin - The MATE Model (7/40)

Task Overdecomposition

Typical MPI Decomposition
1 Subdomain / Core

Overdecomposed Grid
4 Subdomains / Core

4 available cores

No overlap

Better core usage with
Parallel Communication

Additional
Data Motion

Observation: Overdecomposition refines task granularity but requires additional data motion.
Let’s evaulate these effects experimentally.

 Sergio Martin - The MATE Model (8/40)

 Hardware Testbed: Cori KNL @ NERSC

Processor: Single-socket Intel "Knights Landing" with 68 cores per node @ 1.4 GHz

NERSC Cori Phase II (KNL) Supercomputer:
9,688 Computing Nodes

Memory: 96 GB DDR4 2400 MHz memory per node (8M page size).

Software:
● Cray-MPICH/7.6.2
● Intel icc compiler 18.0.1 (-O3)

 Sergio Martin - The MATE Model (9/40)

Test Case: 13-Point Stencil Solver
Solves a 3D Poisson equation using the Jacobi Method.

Image Source: "Accelerating a 3D Finite-Difference Earthquake
Simulation with a C-to-CUDA Translator", D. Unat et al.

3D Grid - 4096^3 Cells
 Experiment Details:

● 64 cores per Cori KNL node (4 unused)
● Benefits from Hyperthreading

○ 128 MPI ranks per node
● Strong Scaling Study (64 to 1024 nodes)

Goal: Obtain benefits at all subgrid sizes.

 Sergio Martin - The MATE Model (10/40)

Experimental Results (Cori KNL)
 Sergio Martin - The MATE Model (11/40)

● No Communication (Upper Bound)
○ No Packing / Unpacking
○ No MPI MessagesHigher is Better

Control Variants:
● Baseline MPI (128 ranks/node)

Formula for % Comm Reduction:

Observation: Overdecomposition-only barely yields any benefits. Can we do better?

Mechanism II:
Code Regions & Dependencies

Observation:
❏ Overdecomposition refines task granularity allowing C/C overlap, but...
❏ Penalizes performance due to higher intranode data motion.

Idea:
❏ Subdivide the source code into smaller regions of code.
❏ Have code regions execute as soon as their dependencies are satisfied1,2.

Code Regions & Dependencies

1“Bamboo: Translating MPI Applications to a Latency-tolerant, Data-driven Form”, T. Nguyen et al. In: SC’12.
2“Toucan - A Translator for Communication Tolerant MPI Applications”, S. Martin, M. J. Berger, S. B. Baden. In: IPDPS’17.

Expected results:
❏ Further refine granularity to expose more potential for C/C overlap.
❏ No additional additional ghost cells are required.

 Sergio Martin - The MATE Model (13/40)

Code Example: Stencil Solver

1D Stencil Solver

MPI
Backend

i=0 i=1 i=...

 Sergio Martin - The MATE Model (14/40)

MATE Dependency Graph

MATE

Scheduler

 Sergio Martin - The MATE Model (15/40)

iteration
0

iteration
1

MATE provides a pragma-based syntax to delineate code regions and their dependencies.

MATE Translation Process

Prepended in Main():

 Sergio Martin - The MATE Model (16/40)

Core Usage Timeline

Overdecomposed
No Regions

2 Subdomains / Core

Observation: Code regions further refine granularity without additional data motion.

Overdecomposed
With Regions

2 Subdomains / Core
+ Code Regions

Better Communication
Parallelism

Same
Data Motion

Cost

 Sergio Martin - The MATE Model (17/40)

MATE’s Runtime System

Task Decomposition

Region Decomposition

 Sergio Martin - The MATE Model (18/40)

Toucan (IPDPS’17) Results

Test Cases:

● Mpix_FlowCart (Unstructured MG)
(33% Comm Reduced @ 256 Nodes)

● Cannon 2D (Dense Linear Algebra)
(55% Comm Reduced @ 384 Nodes)

● LULESH 2.0 (Unstructured Grid)
(72% Comm Reduced @ 576 Nodes)

Source: WikipediaSource: Lawrence Livermore National LaboratorySource: NASA Ames Research Center

 Sergio Martin - The MATE Model (19/40)

Platform:

● NERSC Edison (2x12-core)
● No Hyperthreading

Experimental Results (Cori KNL)
 Sergio Martin - The MATE Model (20/40)

Effect of Overdecomposition

Observation: We can only use a limited amount of overdecomposition.

 Sergio Martin - The MATE Model (21/40)

Mechanism III:
Hierarchical Decomposition

Hierarchical Decomposition

1“Toward an Evolutionary Task Parallel Integrated MPI + X Programming Model”, R. Barrett et al. In: PMAM’15.
2“MPI + MPI: A New Hybrid Approach to Parallel Programming with MPI Plus Shared Memory”, T. Hoefler et al. In: Computing 13.

Expected results:
❏ Local ranks can read boundary cells directly, without in-node communication.

Observation:
❏ There are tasks living in the same node/process.
❏ Data is already present in memory. There’s no need for messaging.

Idea:
❏ Divide the problem grid once, one big subdomain per node/socket/process.
❏ Share subdomain among threads in the same address space1,2.

Let’s evaluate the performance of such an MPI+X approach.

 Sergio Martin - The MATE Model (23/40)

Experimental Results (Cori KNL)
 Sergio Martin - The MATE Model (24/40)

Observation: The benefits of MPI+X fades as we scale up.

MPI+Pthreads Configuration:
8 Threads per MPI Process
8 MPI Processes per Node

Hierarchical Decomposition
Observation:
❏ Overdecomposition increases internal data motion.
❏ Data is already present in node.

Idea:
❏ Divide the problem grid once, one big subdomain per node (socket).
❏ Share subdomain among threads in the same address space1,2.
❏ Further: Share subdomain among overdecomposed ranks in the same process.

Expected results:
❏ Local ranks can read boundary cells directly, without in-node communication.
❏ Overdecomposition will not increase internal data motion.

1“Toward an Evolutionary Task Parallel Integrated MPI + X Programming Model”, R. Barrett et al. In: PMAM’15.
2“MPI + MPI: A New Hybrid Approach to Parallel Programming with MPI Plus Shared Memory”, T. Hoefler et al. In: Computing 13.

 Sergio Martin - The MATE Model (25/40)

MATE as a Unified Model
● New Model: Workload decomposed twice. Every subdomain is shared among multiple tasks.

MATE Model
1 Subdomain / Core + 4 Tasks in Subdomain

Overdecomposed (x4)
4 Subdomains / Core

Typical SPMD Decomposition
1 Subdomain / Core

Observation I: Avoids in-node data motion as in A+B models (MPI+openMP, MPI+MPI, MPI+PThreads, etc).
Observation II: It does so in a single, unified model, instead of combining two agnostic models.

 Sergio Martin - The MATE Model (26/40)

MATE Runtime System

Level 1 Decomposition

Level 2 Decomposition

Region Decomposition

 Sergio Martin - The MATE Model (27/40)

MATE Local Synchronization Logic
 Local Rank 0 Local Rank 1 Local Rank 2

Observations:
● Each task consumes its neighbor’s

computations from previous iteration.
● Requires a process-wide barrier

(#pragma omp barrier, MPI_Barrier)

Rank 0 Rank 1 Rank 2

Local Subdomain

Idea:
● Allow inter-task region dependencies
● Commutative, yet non-transitive.

Effect:
● Every local task is released as soon

as its neighbors have finished
their previous iteration’s compute.

 Sergio Martin - The MATE Model (28/40)

MATE Local Synchronization Syntax

❏ Use ‘@’ to indicate that depended region belongs to neighbors.

Syntax:
❏ Inform MATE of local neighbor ranks (MATE_AddLocalNeighbor)

 Sergio Martin - The MATE Model (29/40)

Core Usage Timeline

Overdecomposed
MATE Model

2 Subdomains / Core
+ Dependencies

No Additional
Data Motion

Overdecomposed
With Code Regions
2 Subdomains / Core

+ Dependencies

Additional
Data Motion

Observation: Using a hierarchical decomposition mitigates in-node data motion due to overdecomposition.

 Sergio Martin - The MATE Model (30/40)

Experimental Results (Cori KNL)

 Sergio Martin - The MATE Model (31/40)

Overdecomposition in MATE

 Sergio Martin - The MATE Model (32/40)

Observation: There is a synergistic effect in using Hierarchical Overdecomposition.

Mechanism IV:
Communication-Based

Prioritization

Node Boundary

Communication-Based Prioritization
● Fact: Not all subranks incur the same communication cost.
● Idea1: Prioritize subranks with higher communication cost to execute first.

Crossing Node
 Boundary

Crossing Process
 Boundary

Synchronization Only

Adaptive Algorithm in MATE:

● Effect: Initialize costly communication first.

1"Performance tradeoffs in multi-tier formulation of a finite
difference method" S. B. Baden and D. Shalit. In: ICCS 2001.

Higher Priority
(mostly Node Boundary)

Medium Priority
(Mixed Boundaries)

Low Priority
(Inner Tasks)

 Sergio Martin - The MATE Model (34/40)

Experimental Results (Cori KNL)

1,048,576
MATE Tasks

(1.45x Speedup)

 Sergio Martin - The MATE Model (35/40)

Cannon2D Results
 Sergio Martin - The MATE Model (36/40)

65k
MATE Tasks

(1.42x Speedup)

Conclusions and
Next Steps

MATE Model Conclusions
● The overdecomposition-only approach is limited.

○ It can realize communication/computation overlap, but...
○ Requires additional intranode data motion.

● We can refine task granularity by splitting them into code regions.
○ Regions can be independently scheduled based on their dependencies.
○ This does not introduce additional data motion.

● Hierarchical decomposition solves the data motion problem.
○ Enables higher levels of overdecomposition (x8 vs. x2) efficiently.
○ MATE’s inter-task dependencies enable efficient local synchronization.

● Communication-based prioritization can improve performance.
○ MATE can assign priorities adaptively during execution.

 Sergio Martin - The MATE Model (38/40)

All of these mechanisms
can be integrated into a

single unified model

● Limitations:
○ Hierarchical decomposition requires re-factoring the work distribution logic.
○ Thread/MPI concurrency is still a limiting factor in MATE processes.

Process-Wide MPI Lock

Hurdle: Thread Concurrency

● MPI implements a process-wide lock, which limits communication concurrency.

Source Buffer (Non-contiguous data)

Hidden MPI Buffer (Contiguous data)

MATE Workers

● Non-contiguous data need to be packed before communicating.

Explicit Buffer (Contiguous data) Thread-Safe

Process-Wide MPI Lock

● Partial Solution: Perform thread-safe packing (MPI_Pack/Unpack) before issuing a send/recv.

 Sergio Martin - The MATE Model (39/40)

Next Step: Mpix_FlowCart

Source: https://www.nas.nasa.gov/publications/software/docs/cart3d/

● Production code developed by NASA Ames and NYU.
● It has hundreds of users.

● Uses a multigrid with irregular meshes.
● High volume of asymmetric communication.
● Benefits from hyperthreading (128 ranks), therefore
● Overdecomposition-only approach is too punishing.
● Performs reads/updates on the same grid (Gauss-like).

Applying the MATE model will require:
● Creating a two-level SFC that divides the grid so that:
● Virtualized ranks can compute without data hazards.
● Deal with worker thread/MPI concurrency.

 Sergio Martin - The MATE Model (40/40)

Mpix_FlowCart is an analysis package for aerodynamic design.

Mpix_FlowCart is particularly challenging:

Q&A
Contact:

sergiom@eng.ucsd.edu
mate.ucsd.edu

mpix_flowCart Summary (42/27)

Edison Results - Strong Scaling

Wait Time
Reduction:

63%

Running Time
Reduction:

11%

Speedup:
1.13x

Wait Time
Reduction:

63%

Running Time
Reduction:

14%

Speedup:
1.16x

Wait Time
Reduction:

49%

Running Time
Reduction:

9%

Speedup:
1.10x

Wait Time
Reduction:

14%

Running Time
Reduction:

3%

Speedup:
1.03x

