
Toucan
 A Translator for Communication

Tolerant MPI Applications

31st IEEE International Parallel & Distributed Processing Symposium

Sergio Martin
*University of California

 San Diego

Marsha J. Berger
Courant Institute

New York University

Scott B. Baden*
Lawrence Berkeley
National Laboratory

Motivation

2

● Problem: Communication costs are significant in large-scale parallel applications
○ Moreover, the overheads are continuing to grow towards the Exascale.

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

● Coping strategies:
○ Tolerate or avoid communication.
○ One Approach:

 Overlap communication with computation by manually restructuring the code.

● Shortfalls:
○ Entangles the overlap strategy with the application logic.
○ Requires a considerable amount of effort.
○ For large applications, this would be impractical.

Anatomy of a (Typical) MPI Program

3

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Begin

 Initialize Data

Main Loop
 {
 … Receives …
 … Sends …
 … Compute …
 }

 Other Communication
 Output Result

End

Overlap Communication
 and Computation via

 Manual Transformation

Begin

 Initialize Data

Main Loop
 {
 … Receives …
 … Sends …
 … Compute(Independent) …
 -- Wait --
 … Compute(Dependent) …
 }

 Other Communication
 Output Result

End

Introducing Toucan

4

● A Source-to-Source Translator of C/C++ MPI Applications.
○ Automatically generates a communication-tolerant variant of the source code.
○ Guided by programmer annotations (directives).
○ Based on the annotation scheme of our previous work: Bamboo.
○ Built using the ROSE Compiler Framework (LLNL).

○ MATE uses a dynamic scheduler that encapsulates most
of the scheduling complexity in the runtime system.

○ This strategy avoid code bloating compared to static
scheduling and inlining (Bamboo).

○ Supports recursive code.

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

(Pronounced ‘Mah-tay’)
● The translated code is compiled/linked to execute with our runtime system: MATE.

Toucan’s Approach

5

Begin

 Initialize Data

Main Loop
 {
 … Receives …
 … Sends …
 … Compute …
 }

 Other Communication
 Output Result

End

Programmer Annotates
Code Regions Using

Toucan Directives

Begin

 Initialize Data

 # Toucan Superblock

Main Loop
 {
 { … Receives … } # Send Region
 { … Sends …} # Receive Region
 { … Compute … } # Compute Region
 }

 Other Communication
 Output Result

End

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Limits to Overlap

6

● In a typical MPI execution, each rank is assigned to a single thread.
○ Even with manually restructured codes,

overlap is limited to a single rank/core.
○ Cores will sit idle while other ranks may be ready to execute.

● Overdecomposition can help improve overlap.
○ Idea: create multiple ranks for each core (AMPI / Charm++)
○ A core can switch to another rank while other are still waiting

for communication operations.

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Core Usage Timeline

 MPI - No Overlap

Toucan - 2 Subranks per Core

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Output Code

8

 III. Translation

Example: 1D Stencil Jacobi Solver

K

Toucan’s Implementation

9

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Annotating an MPI Program

10

Example: 1D Stencil Jacobi Solver

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

K

 Hardware Testbed: Edison @ NERSC

11

Node Configuration:
● 2 x 12-core Intel Ivy Bridge processors (Total: 24 cores per Node) @ 2.4 Ghz

Memory:
● 1 NUMA Node per Processor
● 32 Gb DDR3 per NUMA
● 64 Gb DDR3 Total per Node

Software:
● Cray-MPICH v7.4.1
● Intel icc compiler 15.0.1 (-O3)
● Intel MKL Library (for dgemm)

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Test Cases

12

Code Variants:
● MPI Original (Base Case)
● Manually Overlapped*
● Toucan
● Ideal (No communication)

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Algorithms:

● Mpix_FlowCart (Unstructured MG)

● Cannon 2D (Linear Algebra)

● LULESH 2.0 (Unstructured Grid)

Source: WikipediaSource: Lawrence Livermore National LaboratorySource: NASA Ames Research Center

Dense Linear Algebra
Test Case: 2D Cannon’s Algorithm

Computes the matrix product of two matrices
in a series of √P steps, where P = # of ranks.
Each step rotates blocks of matrices A and B
along rows and columns of the 2D rank array.

Hand Coded Overlap employs additional
buffers while computing the next step.

4 directives required for Toucan Version

Experiment Details:
Weak Scaling Study (Flops/core constant).

Results:
64 to 85% Communication Hidden by Toucan

13

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

n=67890

n=85536

n=107770

Unstructured Grid (Regular)
Test Case: LULESH 2.0

LULESH is highly simplified hydrodynamics
application, developed as a proxy application
at the Lawrence Livermore National Lab.

No Manually Overlapped variant available.

20 directives required for Toucan Version
(5 Superblocks)

Experiment Details:
Weak Scaling Study (643 elements/core).

Results:
60 to 85% Communication Hidden by
Toucan

14

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Unstructured Grid (irregular)
Test Case: Mpix_flowCart

Production code developed by NASA Ames.
Uses multigrid with an irregular mesh to solve
the compressible Euler equations. Used in
Aerospace design, hundreds of users.

No Manually Overlapped variant available
(20K lines of code). 20 directives required for
Toucan Version (4 Superblocks)

Experiment Details:
Strong Scaling Study (75M Cell Mesh).

Results:
33 to 55% Communication Hidden by Toucan

15

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

Conclusions

16

● Toucan was able to hide between 33% and 85% of the communication cost in 3
common HPC application motifs.

● Dynamic Scheduling was key to avoiding code bloating and support recursion.

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

● Limitations:
○ Collective communication operations are not overlapped by Toucan.
○ Global and static variables need to be privatized.

● Current/Future Steps:
○ Investigate performance fall off in Mpix_flowCart.
○ Generalize the RSC model to a broader annotation model.
○ Create a hybrid model where local tasks can communicate through SHMEM.

● Only a modest amount of annotation was required.

Related Work

17

I. Introduction | II. Toucan Model | III. Translation | IV. Experiments | V. Conclusions

● Bamboo:
○ “Bamboo - Translating MPI Applications to a Latency-tolerant, Data-driven Form”

T. Nguyen, P. Cicotti, E. Bylaska, D. Quinlan, and S. Baden. In: Supercomputing ‘12.

● Adaptive MPI:
○ “Adaptive MPI”. C. Huang, O. Lawlor, and L. V. Kalé. In: LCPC ‘04.

● MPI/SMPSs:
○ “Overlapping Communication and Computation by Using a Hybrid MPI/SMPSs Approach”

V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero . In: ICS ‘10.

● Delta Send-Recv Model:
○ “Overlapping Communication and Computation by Using a Hybrid MPI/SMPSs Approach”

B. Bao, C. Ding, Y. Gao, and R. Archambault. In: CCGRID '12.

● Compiler based techniques.
○ “Exact Dependence Analysis for Increased Communication Overlap”

S. Pellegrini, T. Hoefler, and T. Fahringer. In: EuroMPI ’12
○ “MPI-aware Compiler Optimizations for Improving Communication-computation Overlap”

A. Danalis, L. Pollock, M. Swany, J. Cavazos. In: ICS ‘09

Questions?

18

Contact:
sergiom@eng.ucsd.edu
berger@cims.nyu.edu

baden@lbl.gov

Website:
mate.ucsd.edu/toucan

